

Wargaming with Monte-Carlo Tree Search

Presentation for the 14th NATO ORA Conference - Erik Kalmér and Christoffer Limér

Project background

- Started as our Bachelor's degree project at The Royal Institute of Technology (KTH) in collaboration with the Swedish Defence Research Agency (FOI)
- Within the context of artificial intelligence, there was an interest in applications within military strategy.
- Specifically, wargaming was chosen for exploration.

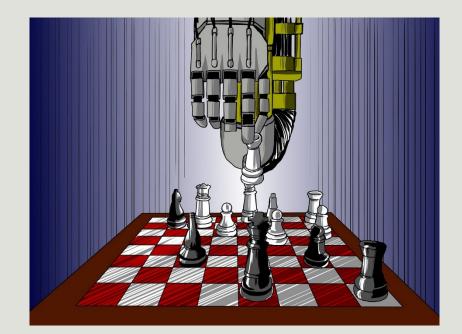
Strategy games as training and evaluation of military strategies

- Even the ancient Greeks played strategy board games in the fifth-century B.C
- The Germans (Prussians) further developed the game of Chess into more realistic strategy games that were used heavily during 19th century.
- "It's not a game at all! It's training for war. I shall recommend it enthusiastically to the whole army." -General Karl von Müffling of Prussia (1824)

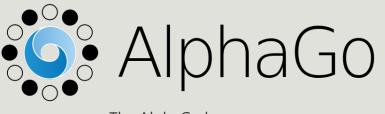
THE AUTUMN MANGEUVRES-OFFICERS PLAYING AT KRIEGS SPIEL, OR THE "GAME OF WAR"

Prussian officers playing Kriegsspiel (illustr. August 1872).

Strategy games as training and evaluation of military strategies


- Many aspects of wargaming have stayed the same.
- Wargaming is still relevant today, could modern AI techniques enhance this further?
- Could AI-agents be developed to give decision support for Course of Action (COA) within wargaming?

A wargame at the US Marine Corps War College (April 2019)


Artificial intelligence for strategy games

- In the early 50s when artificial intelligence was a somewhat new field, attempts were being made to get computers to play chess.
- In 1997 the Chess program Deep Blue officially beat the world champion, Garry Kasparov
- Since then, scientists have been looking for new challenges

Artificial intelligence for strategy games

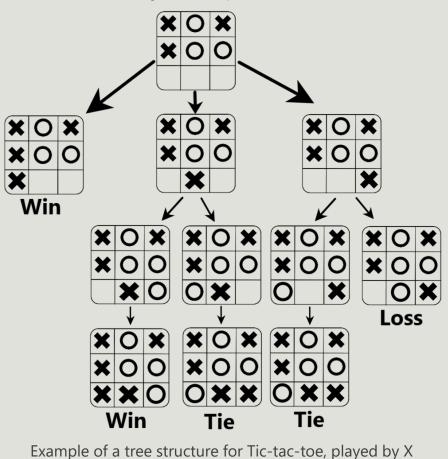
- In March of 2016, the program AlphaGo defeats world champion Lee Sedol in the game of Go
- This was unexpected, some believed such a program would take at least another decade to develop
- A vital part of the AlphaGo and its successors is its use of an effective search algorithm called Monte Carlo Tree Search (MCTS)
- Could MCTS be used to play a less abstract strategic board game?

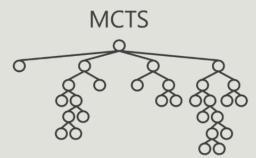

The AlphaGo logo

A Go game in progress

Our research project in one sentence:

Can we create a program that can play the strategic board game Risk at a high skill level, using Monte Carlo Tree Search?

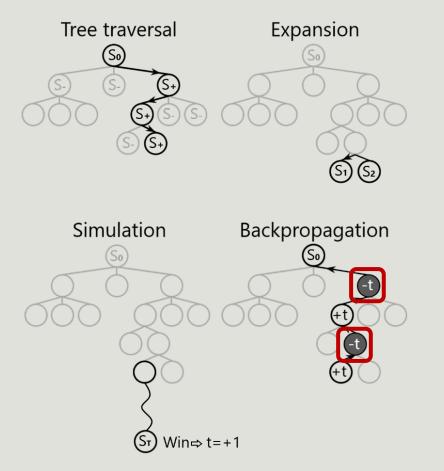


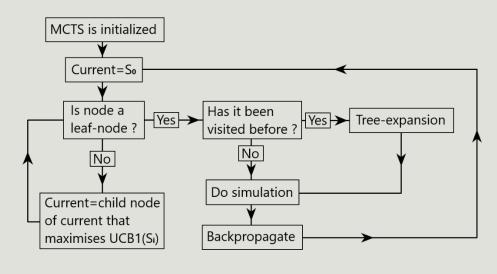

- A commercial strategic board game that is less abstract then Chess but with reasonable complexity
- Our first step towards more complex strategy environments

What makes the Monte Carlo Tree Search effective?

• If we use an easy example, Tic-tac-toe

• Monte Carlo Tree Search or Uniform Tree Search

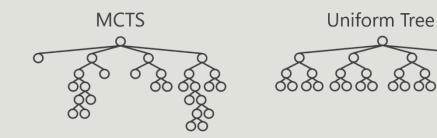




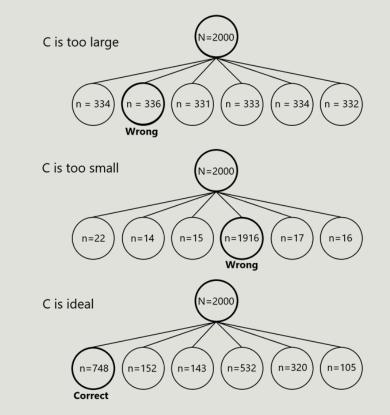
How the MCTS algorithm works at a glance

• The four phases of MCTS

Flowchart for MCTS

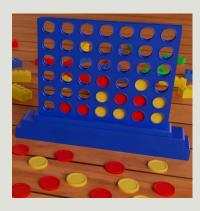

Looking under the hood of MCTS using UCB1

• The UCB1 formula is used by MCTS to select the next move/node in the traversal phase


$$UCB1_i = \overline{V}_i + C * \sqrt{\frac{\ln N}{n_i}}$$

Where:

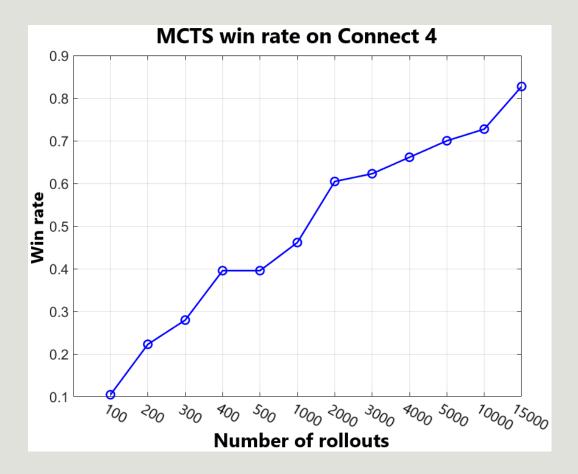
- \overline{V}_i = Empirical mean-valuation (t_i/n_i)
- n_i = Number of simulations for node_i
- t_i = Sum of all valuations of node_i
- N = Total number of simulations for parent-node
- C = Constant (exploration parameter)



The constant "C" is used to balance the explorationexploitation trade-off, and it is essential to choose wisely

Our first implementation with Connect 4

- We used the programming language Python to build our client from scratch
- An initial program was made to serve as a trial for our MCTS algorithm. The game of choice was Connect 4
- It was important to get a successful MCTSagent on a simple game first, before moving on to a more complex game



The game Connect 4

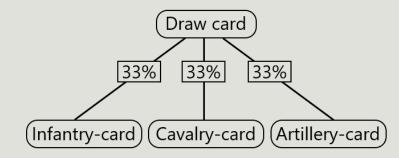
C:\Ubuntu\riskown\Tic_Tac.exe			×	
1 2 3 4 5 6 7			-	•
1				
2				
3 0				
4 0 X				
5 - 0 X 0				
6 - X O X X				
MOVES : [35, 22, 16, 10, 32, 40, 41]				
99%Yes!!!				
number of children : 7	-			
Node visits: [4937, 13, 9, 9, 9, 9, 13]				
t-value: [-2361199	-9.	-9.		
11.]				
UCB_choice_value [-48846100010	000.	-1000.		
-1000846.]				
Moves: [35, 22, 16, 10, 32, 40, 41]]			
1 2 3 4 5 6 7				
1				
2				
3 0				
4 0 X				
5 - 0 X O				
6 X X O X X				
enter column:				
			1	ø

Our first implementation with Connect 4

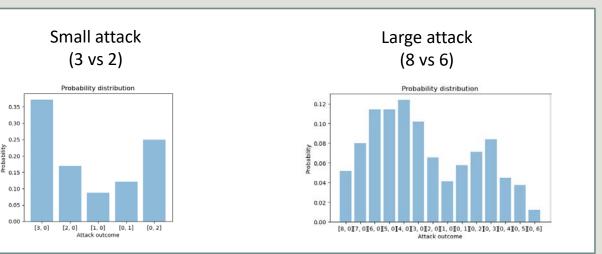
- The term **Rollout** means the number of evaluated moves/nodes
- If the MCTS-agent works correctly, there should be a correlation between the number of rollouts and performance
- In the implementation of Connect 4, we see a distinct correlation between the win-rate and the number of rollouts
- The agent with 100 rollouts wins only about 10% of its matches, while the agent with 15000 wins almost 83%

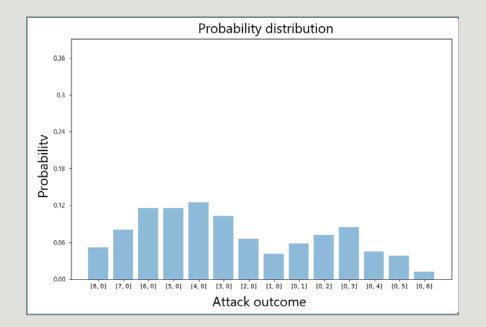
MCTS for Risk

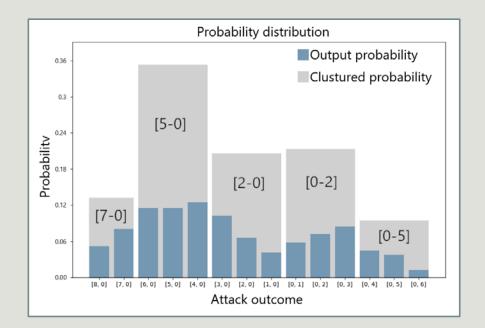
Risk has some challenges that must be solved when implementing it on the MCTS.

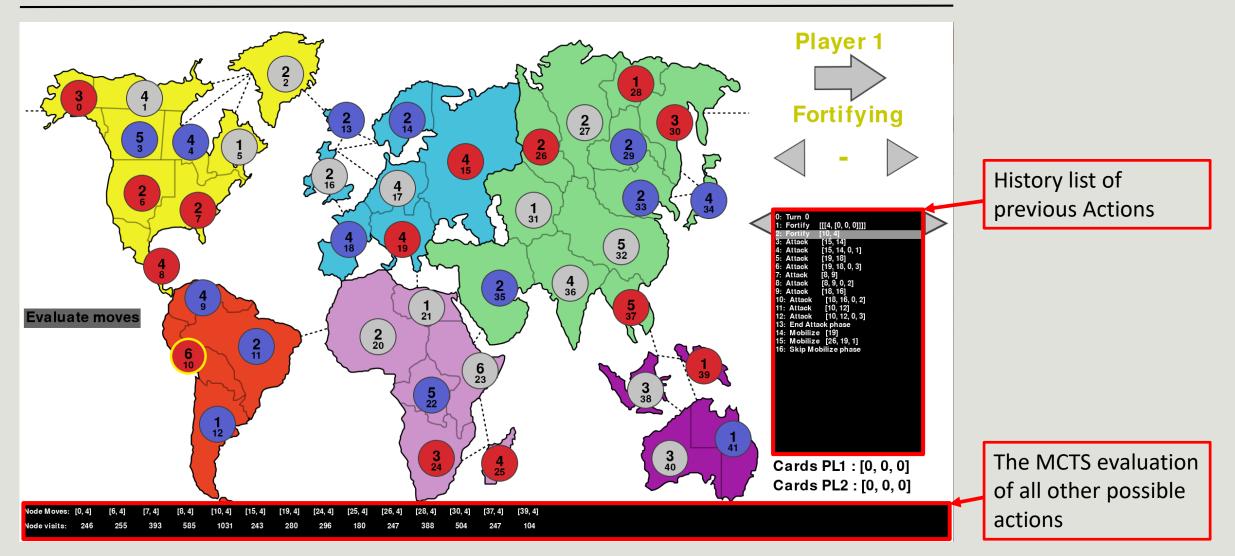

- For example, it is not a game with perfect information such as chess or connect-4 when army cards are kept secret by the opponent.
- There are some elements of uncertainty that our first MCTS-algorithm can't handle.
- To handle these and more, we have used various techniques to facilitate and improve our implementation.

Chance-nodes

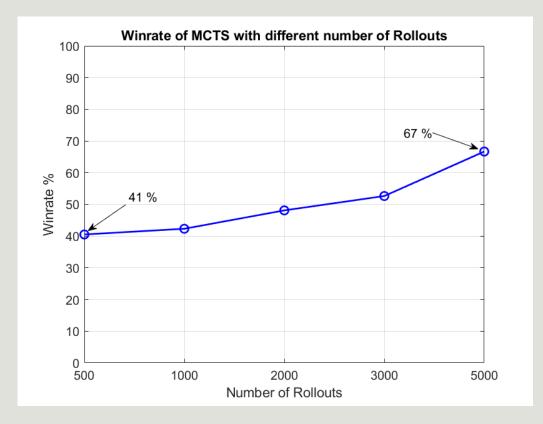

Cards



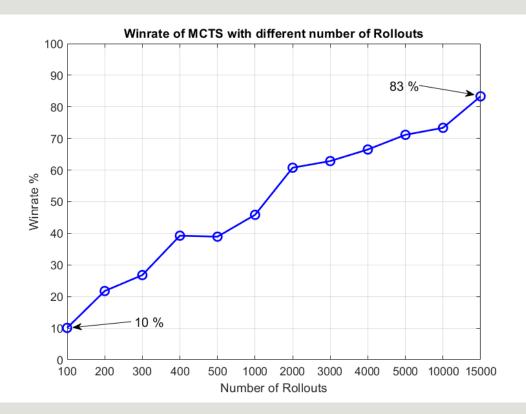

Attack



Chance-node Clustering

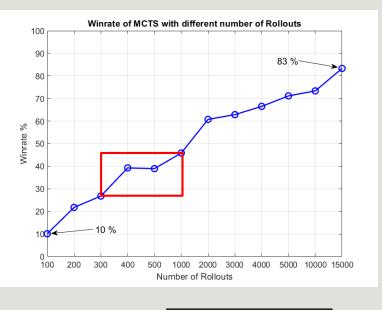


User Interface (UI)



Testing the MCTS

Risk



Connect-4

How does the MCTS stack up against human players?

Connect-4

	Rollouts
Casual players	300-1000

Risk

MCTS-agents with Cut-off 10	Win rate against human players		
500 Rollouts	10 %	Almost no wins	
5 000 Rollouts	40 %	Under half	
15 000 Rollouts	60 %	Just over half	

Despite the game of Risk having a large amount of luck, which we first thought would disrupt the convergence, our MCTS has shown itself capable of playing at a human level, possibly even outperforming us.

Lessons learned when working with Risk

What are the limitations?

- Large sets of possible actons may need "action pruning"
- Elements of chance/uncertanty prohibit the MCTS from converging

How much work is needed for an implementation?

• Relatively little work and time required to implement on new environments

Possibilities for decision support

Synthetic players in educational wargaming

- Relieve people from roles and tasks in wargaming scenarios. (Collaborator or/and Enemy) [Instead of a whole team of people playing different roles, the AI can play those roles with an equal skill/performance]
- Train people in different scenarios and learn from possible mistakes.

Evaluations in analytical wargaming

- Evaluate action alternatives
- Scenario analysis

For further interest please read our paper or contact us: <u>limer@kth.se</u> or <u>ekalmer@kth.se</u>

Thanks for listening!